
Eunseon (Penny) Kwon, S. Ratneshwar & Eunjin (Anna) Kim


To link to this article: http://dx.doi.org/10.1080/00913367.2015.1089427

Published online: 18 Nov 2015.

Article views: 14

View related articles

View Crossmark data
Does brand sponsorship of sporting events lead to more congruence in consumers’ images of sponsoring brands and sponsored sporting events? If so, what factors affect the extent of increase in image congruence? Results of a study with three sporting events (replicate stimuli) and nonstudent participants confirm Gwinner and Eaton’s (1999) finding that brand sponsorship increases image congruence. Further, there is a greater increase in image congruence when functional similarity between sponsoring brands and sponsored events is high (versus low). But contrary to Gwinner and Eaton (1999), the present findings do not indicate that the increase in image congruence is moderated by high (versus low) image-based similarity.

Corporate sponsorship of sporting events is big business, projected to grow at a global level from $33.6 billion in 2012 to $35.2 billion in 2013 (Clark 2010). Sponsorship expenditures in the North American market also have been increasing annually, reaching about $14 billion in 2014, about one-fifth of all spending on television advertising. Perhaps even more remarkable is that some individual sporting events, such as the 2014 FIFA World Cup event in Brazil, can make over $1 billion from sponsorship deals (Jacobs, Jain, and Surana 2014).

Much of the spending on sponsorship of sporting events is clearly aimed at brand building (Chien, Cornwell, and Pappu 2011; Zdravkovic and Till 2012). Brands increasingly try to connect with consumers by becoming a part of their everyday lives and experiences, and watching live sporting events—on TV or on other media devices—has become an essential part of many people’s routines (Cornwell and Kwak 2015). Nonetheless, we presently have only a limited understanding of the effects of sponsorship of a sporting event on the image of the sponsoring brand (Carrillat, Harris, and Lafferty 2010; Cornwell and Maignan 1998; Han et al. 2013; Zdravkovic and Till 2012). To provide insights on this important topic, Gwinner and Eaton (1999) examined whether sponsorship leads to image transfer from the sponsored sporting events to the sponsoring brands, as assessed by the degree of congruence in consumers’ images of the two entities. Their findings confirmed the hypothesis that image congruence is enhanced by brand sponsorship. Further, Gwinner and Eaton posited—but did not conclusively show—that the extent of increase in image congruence is moderated by the degree of “match up” or similarity between the sponsoring brand and the sporting event.

The present research focuses on a reinquiry of Gwinner and Eaton (1999) for three key reasons. First, as discussed earlier, brand sponsorship of sporting events is a substantively important topic, and the effects of sponsorship on brand image should be of great interest to brand managers as well as advertisers. Second, Gwinner and Eaton’s article has had considerable impact on scholarly research, with more than 700 Google Scholar citations to date. Third, as discussed in more detail in a subsequent section, Gwinner and Eaton’s article has had considerable impact on scholarly research, with more than 700 Google Scholar citations to date. As discussed in more detail in a subsequent section, Gwinner and Eaton’s article has had considerable impact on scholarly research, with more than 700 Google Scholar citations to date.
LITERATURE BACKGROUND AND THEORETICAL FRAMEWORK

Based on associative-memory models of brand equity (e.g., Keller 1993) and consumer culture theories of meaning transfer (e.g., McCracken 1989), Gwinner and Eaton (1999) proposed and empirically demonstrated (their hypothesis 1) that brand sponsorship of sporting events can lead to image transfer. Gwinner and Eaton’s conceptual arguments for this proposition centered on the idea that, just as in the case of celebrity endorsers, the key “meanings” associated with a sporting event can become linked to a sponsoring brand in a consumer’s mind. Carrillat, Harris, and Lafferty (2010) extended Gwinner and Eaton’s (1999) ideas by showing that image transfer (and occasionally even image contrast) can occur fortuitously between two brands that concurrently sponsor the same sporting event. While Gwinner and Eaton and Carrillat, Harris, and Lafferty (2010) focused on brand image measures, other studies (e.g., Stipp 1998) have shown that sponsorship of major sporting events, such as the Olympics, can also lead to more positive consumer attitudes toward the sponsoring brand.

For their second hypothesis, Gwinner and Eaton (1999) drew on the literature on match-up effects of celebrity endorsers on attitudes toward the endorsed products (e.g., physically attractive celebrities) to propose that brand sponsorship of sporting events can lead to image transfer. They found that a sense of fit is based on a variety of factors, including the extent to which a sponsor’s products are used by participants of the sponsored event (compare functional similarity in the present research), the match between the sponsor’s target audience and the sponsored object’s audience, and attitude as well as geographic similarities.

The fit between salient characteristics of celebrity endorsers and endorsed products (e.g., physically attractive celebrities endorsing beauty products) is a crucial determinant of favorable consumer response to endorsements (e.g., Kahle and Homer 1985; Kamins 1990). A match between consumer self-image and his or her image of an entertainment event has been found to be important in studies of event marketing (e.g., Close, Krishen, and LaTour 2009). Analogously, a sense of fit between sponsoring brands and sponsored entities has been found to be conducive to positive attitudes toward sponsoring brands in both sports and nonsports settings (Olson 2010; Rodgers 2003–2004; Simmons and Becker-Olsen 2006). Consistent with such findings, Gwinner and Eaton (1999) posited that brand sponsorship effects on image transfer also will be stronger when there is greater image-based or functional similarity between sponsoring brand and sponsored sporting event (their hypotheses 2a and 2b). Image-based similarity refers to the degree of relatedness between the two entities, whereas functional similarity refers to the likelihood of the sponsoring brand being used by participants in the sponsored sporting event (Gwinner 1997; Gwinner and Eaton 1999; McDonald 1991).

In related research, Zdravkovic and Till (2012) demonstrated that a highly fitting (versus poorly fitting) partnership between a sponsoring brand and a sponsored entity leads to a stronger associative connection between the two in memory, which in turn is conducive to the transfer of specific associations from the sponsored entity to the sponsoring brand. Similarly, using survey data related to the 2010 FIFA World Cup event, Han and colleagues (2013) showed that consumers’ perceptions of image fit between various corporate sponsors and the World Cup are positively associated with attitudes toward the sponsors (see also Koo, Quarterman, and Flynn 2006). Speed and Thompson (2000) and Rifon and colleagues (2004) confirmed the beneficial effects of fit for attitudes toward brand sponsors, and the latter study also showed that such effects are mediated by perceptions of sponsor credibility. Prior research has also shown that in terms of viewers’ memory for events, fit between brand sponsors and sporting events facilitates correct recall of the names of the sponsors (Wakefield and Bennett 2010). Groza, Cobbs, and Schaefers (2012) studied the effects of fit on the sponsored entity. They showed that poor fit is harmful to the brand equity of the sponsored entity, but this effect gets attenuated with an increase in the number of congruent sponsors. Taken together, it is noteworthy that, since the publication of Gwinner and Eaton (1999), no other studies have investigated the role of image-based and functional similarity in moderating the effects of brand sponsorship on image transfer.

ISSUES WITH GWINNER AND EATON’S (1999) STUDY

Gwinner and Eaton’s (1999) data in support of their second key hypothesis (hypotheses 2a and 2b) cannot be interpreted confidently for three reasons. First, their experiment design (see their Table 1) used three different sponsoring brands, paired with three different sporting events, for the image-based similarity, functional similarity, and “no similarity” conditions. Consequently, the stimulus pairs of sponsoring brand and sponsored sporting event were fully confounded with the different levels/types of similarity. The implication is that, in Gwinner and Eaton’s data, the moderating effects of similarity cannot be separated from the idiosyncratic effects of the specific stimuli used in the various similarity conditions of their experiment. Second, as Gwinner and Eaton (pp. 53–54) themselves acknowledge, the stimuli in their “no similarity”
HYPOTHESES

Because the focus of the present research is on an empirical reinquiry, our hypotheses essentially parallel the two aforementioned hypotheses of Gwinner and Eaton (1999) and have the same conceptual underpinnings. But we first clarify some important constructs and associated terminology. First, it is noteworthy that Gwinner and Eaton’s operationalization of “image transfer” assessed the degree to which brand sponsorship caused image perceptions of the sponsoring brand and the sponsored sporting event to converge, that is, affected image congruence; the measure did not assess one-way transfer of image from the sporting event to the sponsoring brand. Gwinner and Eaton (1999, p. 55) acknowledge this limitation as an assumption in their research. Still, it is conceivable that there could be situations where a sponsoring brand’s image is more strongly entrenched in a consumer’s mind than the image of the sponsored sporting event. If so, sponsorship could lead to image transfer from the sponsoring brand to the sporting event rather than vice versa. Accordingly, we adopt an agnostic position in regard to the direction of image condition, with Camel cigarettes as a sponsoring brand for World Cup Soccer, yielded anomalous effects that were actually opposite to their hypotheses. Finally, although Gwinner and Eaton posited a moderating influence for image-based and functional similarity in their hypotheses 2a/2b, they did not report the interaction effect of brand sponsorship (versus no brand sponsorship) and similarity on image congruence in their multivariate analysis of variance (MANOVA) results (p. 53). Instead, they relied on one-way analysis of variance (ANOVA) and contrasts within only the brand sponsorship condition to claim support for hypotheses 2a/b. In the reinquiry reported here, we took care to avoid the aforementioned problems.

TABLE 1
Perceived Similarity (Pretest 1) and Image Distance (Main Study) between Sponsoring Brands and Sporting Events as a Function of Type of Similarity, Level of Similarity, and Brand Sponsorship

<table>
<thead>
<tr>
<th>Variables</th>
<th>U.S. Open Golf Championship</th>
<th>NFL</th>
<th>NASCAR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Low Similarity</td>
<td>High Similarity</td>
<td>Low Similarity</td>
</tr>
<tr>
<td>Image Distance – No Brand</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sponsoring Brands →</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perceived Similarity</td>
<td>2.35 (1.50)</td>
<td>5.03 (1.79)</td>
<td>2.54 (1.45)</td>
</tr>
<tr>
<td>Sponsorship</td>
<td>30.66</td>
<td>14.82</td>
<td>32.82</td>
</tr>
<tr>
<td>N = 39</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Image Distance – Brand</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sponsorship</td>
<td>23.20b</td>
<td>10.39d</td>
<td>26.26b</td>
</tr>
<tr>
<td>N = 44</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes. Numbers in cells refer to means and standard deviations (in parentheses) of variables.

The perceived similarity measure had a theoretical scale range of 1–7, and larger numbers indicate greater similarity. The means for the low similarity and high similarity conditions for each sporting event and each type of similarity differed reliably from one another in all cases (p < .001).

The image distance measure had a theoretical scale range of 0–60, and smaller numbers indicate greater image congruence; see text for details. Statistically significant differences between the No Brand Sponsorship and Brand Sponsorship conditions are noted as follows: a significant at p < .10; b significant at p < .05; c significant at p < .01; d significant at p < .001.
transfer. We employ Gwinner and Eaton’s dependent variable measure for our study but, paralleling the terminology of Carrillat, Harris, and Lafferty (2010, pp. 111–12), we refer to the construct of interest as *image congruence* rather than *image transfer*.

Second, in their hypotheses 2a/2b, Gwinner and Eaton (1999) refer to the moderating variable as image based and functional similarity versus no similarity. However, it is widely accepted that, rather than being categorical, similarity is best represented as a continuum, and it is typically operationalized by researchers as an interval-scaled variable (Nosofsky 1986; see also Gwinner and Eaton’s own data for their “no similarity” condition in their Pretest 1, Table 1, p. 51). Consequently, we do not use the term *no similarity* in our research and prefer to theorize in terms of high versus low image-based and functional similarity. Further, we use the term *similarity* rather than *fit* or other terms to maintain the parallel with Gwinner and Eaton.

**H1:** Brand sponsorship of sporting events will increase image congruence between sponsoring brands and sporting events.

**H2a:** Brand sponsorship will lead to a greater increase in image congruence when image-based similarity between sponsoring brands and sporting events is high (versus low).

**H2b:** Brand sponsorship will lead to a greater increase in image congruence when functional similarity between sponsoring brands and sporting events is high (versus low).

**STUDY**

**Overview of Main Study**

The design of the main study was a mixed model experiment. The between-subject conditions were 2 (type of similarity: image based versus functional) \( \times 2 \) (level of similarity: low versus high) \( \times 2 \) (sponsorship: brand sponsorship versus no brand sponsorship). The within-subject variable was a repeated measure, involving three different sporting events and thereby allowing for replication of stimuli. Research participants (\( N = 376 \) usable responses) were recruited through Amazon Mechanical Turk (AMT) and were provided monetary compensation. All participants were residents of the United States and native speakers of English. All lived in an urban area and were at least 18 years old. They were widely distributed in age, with 51.8% between 18 and 30 years; 50.9% female, and 67% with college degrees. The study was conducted online with Qualtrics software. The key dependent variable, image congruence, was assessed via participants’ judgments of the appropriateness of various trait adjectives for describing the sporting events and sponsoring brands, in a manner very similar to Gwinner and Eaton (1999).

**Stimuli and Pretests**

The three sporting events (replicate stimuli) selected for the study were NASCAR, NFL, and the U.S. Open Golf Championship. These events were selected based on their visibility on national TV networks, popularity across the United States, and long, storied histories. In view of these factors, we expected participants in general to be sufficiently familiar with all three sporting events so as to have clear-cut images of the events. Four different sponsoring brands had to be selected for each sporting event, representing low and high similarity for image-based similarity, and low and high similarity for functional similarity. This was done through Pretest 1. For assessing image congruence in the main study, following Gwinner and Eaton (1999), 10 relevant trait adjectives had to be identified for each sporting event. This was done through Pretest 2.

**Pretest 1.** Data collection for this pretest was done in two rounds, with two different groups of participants (\( N = 209 \) and \( N = 92 \)). As in the main study, data were collected online using Qualtrics, and the participants were recruited through AMT. All participants had to meet the same residency, language, and age criteria as in the main study. In addition, we asked that people participate only if they watched sporting events regularly on TV. The demographic profile of the participants was similar to that of the main study. In Round 1, 53.6% of the participants were 18 to 31 years old and 51.7% were female. In Round 2, 53.3% were 18 to 28 years old and 31.5% were female.

Across the two rounds of Pretest 1, in all, we tested 31 candidate brands for image-based similarity and 21 candidate brands for functional similarity. These candidate brands spanned diverse consumer product categories such as soft drinks, beer, automobiles, hotels, motor oil, apparel, and sporting equipment. As stated previously, the goal of this pretest was to identify appropriate sponsoring brands for the low and high similarity conditions for each sporting event and each type of similarity. Participants were randomly assigned to either image-based similarity or functional similarity, and they judged randomly assigned subsets of the candidate brands for similarity between each of the assigned brands and each of the three sporting events. This procedure resulted in sample sizes of 41 to 54 participants for each similarity judgment.

For assessing image-based similarity and functional similarity between brands and sporting events, we used measures based on Gwinner and Eaton (1999). The measures involved three-item, 7-point Likert scales (1 = *Strongly disagree*; 7 = *Strongly agree*). For image-based similarity, the three items were “The (event name) and (brand name) have a similar image”; “The ideas I associate with (brand name) are related to the ideas I associate with the (event name)”; and “My image of the (event name) is very different from the image I have of (brand name).” The third item was reversed coded. Measure reliability for these image-based similarity judgments was good, with Cronbach’s alpha ranging from .84 to .94.
functional similarity, in the case of NASCAR, the three items were “It is likely that drivers in NASCAR use (brand name) products during NASCAR races”; “When I watch NASCAR, I often see (brand name) products being used by the drivers”; and “(Brand name) is not a brand that drivers in NASCAR would consider using during the races.” The third item was reversed coded. These three items were modified suitably for the other two sporting events, with the use of appropriate words such as “golfers” and “tournament” for the U. S. Open Golf Championship and “players” and “games” for the NFL. Reliability for the functional similarity measure was quite satisfactory (Cronbach’s alpha range = .70 to .92).

Based on the data from the two rounds of Pretest 1, we selected appropriate sponsoring brands for each condition of the main study. See Table 1 for details of the selected brands as well as means and standard deviations for the perceived similarity between sponsoring brands and sporting events. Results of t tests confirmed successful manipulations of similarity for all six pairs of low versus high similarity brands (all ps < .001).

Pretest 2. As noted, the objective of this pretest was to identify a set of 10 trait adjectives for each sporting event that subsequently could be used for assessment of image congruence between sponsoring brands and sporting events in the main study. Pretest 2 was conducted online with Qualtrics, with participants (N = 53) recruited through AMT. For Pretest 2, 26% of the participants were female and 51% were 21 to 30 years old. As in Pretest 1, all participants had to meet the residency, language, and age criteria of the main study and were told that they should participate only if they watched sporting events regularly on TV.

The method for Pretest 2 was as follows. We first generated 20 plausible trait adjectives for each of the three sporting events. Where applicable (e.g., U.S. Open Golf), we included in the 20 adjectives the 10 adjectives used by Gwinner and Eaton (1999). The remaining adjectives were drawn from sources such as Aaker (1997) and various media descriptions of the sporting events. Participants were presented the 20 adjectives for each sporting event in a random sequence and asked to judge the appropriateness of each adjective for describing the particular sporting event on a 1 to 7 scale (1 = Very inappropriate; 7 = Very appropriate). Based on the data collected in this manner, we selected 10 appropriate adjectives for describing each sporting event (see Table 2). Note that all of the adjectives we selected for each sporting event were rated as highly appropriate by the participants, with means ranging from 4.88 to 6.70 on the 1 to 7 scale. In selecting these trait adjectives, we took care to avoid words with very similar meanings and adjectives that had high variance in the appropriateness ratings.

Main Study Method

Procedure. Participants were randomly assigned to one of the eight between-subjects conditions. Those in the brand sponsorship condition were informed that the purpose of the study was to better understand how people felt about brand sponsorship of sporting events. Participants in the no brand sponsorship condition were told that our purpose was to better understand the images people had regarding different brands and sporting events. Participants were asked to (a) complete the entire study without taking a break and (b) do the study only on a laptop or desktop computer. After the participants had been provided the study instructions, to familiarize them with the study task they were administered a trial task involving the Wimbledon Tennis Tournament with Sprite as the sponsoring brand. Right afterward, the three within-subject stimuli relevant to the particular experiment condition were presented to participants in a random sequence. Participants assigned to the brand sponsorship condition first viewed a full-

<p>| TABLE 2 |
| Pretest 2: Trait Adjectives Used in the Measurement of Image in the Main Study |</p>
<table>
<thead>
<tr>
<th>U.S. Open Golf Championship</th>
<th>NFL</th>
<th>NASCAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper class (6.18, 1.04)</td>
<td>Masculine (6.70, 0.54)</td>
<td>Fast (6.41, 1.27)</td>
</tr>
<tr>
<td>Orderly (6.12, 1.10)</td>
<td>Aggressive (6.59, 0.64)</td>
<td>Dangerous (6.37, 0.75)</td>
</tr>
<tr>
<td>Civilized (6.12, 1.07)</td>
<td>Tough (6.40, 0.88)</td>
<td>Aggressive (5.80, 1.25)</td>
</tr>
<tr>
<td>Slow (6.10, 1.20)</td>
<td>Energetic (6.23, 1.08)</td>
<td>Masculine (5.51, 1.49)</td>
</tr>
<tr>
<td>Calm (6.08, 1.20)</td>
<td>Exciting (6.17, 1.18)</td>
<td>Energetic (5.42, 1.53)</td>
</tr>
<tr>
<td>Formal (6.08, 1.13)</td>
<td>Dangerous (6.12, 0.96)</td>
<td>Strategic (5.31, 1.54)</td>
</tr>
<tr>
<td>Leisurely (5.82, 1.53)</td>
<td>Thrilling (5.92, 1.06)</td>
<td>Exciting (5.29, 1.53)</td>
</tr>
<tr>
<td>Mature (5.69, 1.45)</td>
<td>Strategic (5.83, 1.29)</td>
<td>Wild (5.21, 1.56)</td>
</tr>
<tr>
<td>Accurate (5.68, 1.33)</td>
<td>Fast (5.76, 1.12)</td>
<td>Thrilling (5.21, 1.77)</td>
</tr>
<tr>
<td>Intelligent (5.45, 1.43)</td>
<td>Daring (5.50, 1.41)</td>
<td>Tough (4.88, 1.73)</td>
</tr>
</tbody>
</table>

Note. Numbers in parentheses refer to means and standard deviations (1–7 scales) of the appropriateness of the trait adjectives for describing the particular sporting events.
color picture of one of the three sporting events for 10 seconds. Next, they viewed, for 10 seconds, the same image, but this time with a large, superimposed message stating that the sporting event was sponsored by a particular brand. Brand logos were used in all cases and care was taken to ensure that the sizes of the superimposed messages were nearly identical across experiment conditions (see Figure 1 for examples of the stimuli). Immediately after viewing the stimuli, participants responded to items for the dependent measure. This entire process was then repeated for the other two sporting events. For participants assigned to the no brand sponsorship condition, following Gwinner and Eaton (1999), no images were shown. Instead, these participants simply responded to the items for the dependent measures. Finally, all participants were administered a suspicion probe with the instructions, “In your opinion, what was the objective of this research study? If you have an idea of the research hypothesis, please describe.” Scrutiny of responses to the suspicion probe showed that none of the participants displayed any knowledge of the research hypotheses. Participants’ mean task completion time was 9.64 minutes ($SD = 3.77$ minutes).

**FIG. 1.** Sample stimuli for image-based similarity (brand sponsorship condition).
Dependent measure. As noted, we followed Gwinner and Eaton’s (1999) method for assessing image congruence between sponsoring brands and sporting events. Participants first judged the appropriateness of each of 10 trait adjectives for describing the particular sporting event (1 = Very inappropriate; 7 = Very appropriate). Next, participants judged the appropriateness of the same 10 adjectives for describing the particular sponsoring brand. We assessed image congruence between sponsoring brands and sporting events via an image distance measure (Gwinner and Eaton 1999); this measure in essence represents the “city block” distance in perceptual space between the sponsoring brand and the sporting event. Specifically, we calculated the absolute value of the difference between participants’ appropriateness ratings of the sponsoring brand and the sporting event for each trait adjective and then summed these values over the 10 applicable trait adjectives. This procedure resulted in a 0 to 60 scale for the image distance measure, with smaller values indicating greater image congruence between the sponsoring brand and the sporting event.

Main Study Results

Multivariate analyses. A generalize linear model (GLM; mixed-model) analysis was conducted on image distance, with type of similarity (image-based versus functional), level of similarity (low versus high), and sponsorship (brand sponsorship versus no brand sponsorship) as between-subject variables. The three different sporting events served as a within-subject variable. The results showed, first, that hypothesis 1 was supported. Brand sponsorship (versus no brand sponsorship) resulted in less image distance between sponsoring brands and sporting events ($M = 20.01$ versus $24.72$; $F(1,310) = 30.2, p < .001$). This main effect was qualified by a three-way interaction between sponsorship, type of similarity, and level of similarity ($p < .05$). The results also displayed a two-way interaction between type of similarity and level of similarity ($p < .05$). In view of these interactions, the data were probed with additional GLM (mixed-model) analyses, which were conducted separately for image-based similarity and functional similarity.

The GLM for the image-based similarity conditions yielded a main effect for brand sponsorship ($F(1,166) = 19.4, p < .001$); as expected (per hypothesis 1), brand sponsorship resulted in less image distance than no brand sponsorship ($M = 20.07$ versus $25.49$). The two-way interaction between sponsorship and level of similarity (hypothesis 2a) did not attain significance ($p = .20$). Finally, the multivariate test showed that the two-way brand sponsorship $\times$ sporting events interaction and the three-way brand sponsorship $\times$ similarity $\times$ sporting events interaction were not significant ($p > .8$), indicating that the aforementioned main effect for brand sponsorship was consistent across different sporting events (replicate stimuli).

The GLM for the functional similarity condition also yielded a main effect for brand sponsorship ($F(1,144) = 11.6, p = .001$). As in the case of image-based similarity, brand sponsorship (versus no brand sponsorship) reduced image distance between sponsoring brands and sporting events ($M = 19.96$ versus $23.96$). However, in addition, the results for functional similarity yielded a nearly significant two-way interaction between sponsorship and level of similarity ($F(1,144) = 3.71, p = .056$). Follow-up comparisons of means provided support for hypothesis 2b. When functional similarity was high, brand sponsorship (versus no brand sponsorship) reduced image distance significantly ($M = 14.72$ versus $20.98, p < .05$). But when functional similarity was low, image distance did not differ significantly between the brand sponsorship and no brand sponsorship conditions ($M = 25.19$ versus $26.93$, n.s.). Finally, the multivariate test showed a significant two-way sponsorship $\times$ sporting events interaction ($p < .01$), as well as a significant three-way sponsorship $\times$ similarity $\times$ sporting events interaction ($p < .05$). These interactions indicate that, in the case of functional similarity, the effects of the sponsorship variable on image distance were not uniform across similarity levels and the three sporting events. This issue is examined further in the univariate analyses reported in the next section.

Univariate analyses. A series of $t$ tests was performed for the effects of brand sponsorship at the level of the individual stimuli. The results are summarized in Table 1. In the case of image-based similarity, brand sponsorship (versus no brand sponsorship) resulted in greater image congruence in all six cases, encompassing low as well as high similarity ($ps < .05$ or less). However, the results were not as clear-cut in the case of functional similarity. In purely directional terms, and in accord with hypothesis 1 as well as the main effect observed in the GLM analysis, image distance was less in the brand sponsorship (versus no brand sponsorship) condition for all six stimuli. But the reduction in image distance on account of the brand sponsorship manipulation attained statistical significance in only one high functional similarity case ($p < .001$) and a marginal level of significance in one other high functional similarity case ($p < .10$). Notably, the effect of sponsorship on image distance was not statistically significant in any of the three low functional similarity cases ($ps > .40$).

GENERAL DISCUSSION

As discussed in the introductory section, the effects of brand sponsorship of sporting events on brand image are of great interest to advertising practitioners as well as academics (Cornwell and Maignan 1998; Gwinner 1997). In their well-cited article, Gwinner and Eaton (1999) provided major theoretical and empirical insights on this topic, especially in their demonstration of the effects of brand sponsorship on image congruence between sponsoring brands and sponsored sporting events. Nonetheless, some of the key results reported by
Gwinner and Eaton are questionable due to methodological flaws (see previous discussion). The present reinquiry avoided these methodological flaws and provided noteworthy results, not only partially corroborating their findings but also suggesting directions for further scholarly inquiry.

Specifically, the present study employed replicate stimuli for three different sporting events in a fully balanced design, with appropriate brands selected for low (versus high) image-based similarity and low (versus high) functional similarity for each sporting event. Our study design thus avoided confounding stimuli with levels of similarity (compare Gwinner and Eaton 1999). Further, unlike Gwinner and Eaton (1999), we report interaction effects as well as contrasts of means to test moderating effects.

Our findings strongly support Gwinner and Eaton’s (1999) finding that brand sponsorship, in general, increases image congruence between sponsoring brands and sponsored sporting events. Our results also support Gwinner and Eaton’s match-up hypothesis: that the extent of increase in image congruence on account of brand sponsorship will be moderated by functional similarity between the sponsoring brand and the sponsored sporting event. The increase in image congruence was enhanced when functional similarity was high (e.g., Nike sponsors the NFL or Titleist sponsors the U.S. Open Golf Championship), relative to when functional similarity was low (e.g., A&W root beer sponsors the NFL or Pennzoil sponsors the U.S. Open Golf Championship). Also, none of the three low functional similarity scenarios in our study displayed the anomalous contrast effect in Gwinner and Eaton’s “no similarity” condition.

The present results failed to support Gwinner and Eaton’s (1999) match-up hypothesis of a moderating influence of image-based similarity on the extent of image congruence. Instead, the results displayed a consistent main-effect pattern: regardless of whether image-based similarity was high (e.g., Dodge Ram sponsors NFL) or low (e.g., Toyota Prius sponsors NFL), brand sponsorship consistently prompted more image congruence. It is possible that brand image perceptions are substantially shaped by simple associative learning processes (see, e.g., van Osselaer and Janiszewski 2001), such that image congruence is enhanced even when image-based similarity is relatively low. Perhaps a parallel effect was not observed for functional similarity because, unlike the case of low image-based similarity, brands with low functional similarity, in general, may be just too far removed in perceptual space from the sponsored sporting events for those events to be able to actually “move the needle” on image congruence.

From a practitioner standpoint, the present findings confirm that brands can boost their brand personalities, for example, in terms of desirable traits such as intelligent, tough, and energetic, by sponsoring appropriate sporting events. Functional similarity between brands and sporting events helps enhance image congruence, thereby confirming many current sponsorship practices (e.g., Gatorade is a major sponsor of the NFL). Further, interestingly, our findings suggest that even brands with low image similarity (e.g., if Toyota Prius were to sponsor the NFL) potentially stand to benefit by sponsorship, because cherished attributes (e.g., exciting, fast) may rub off from the sponsored sporting event to the sponsoring brand (see also Stipp 1998).

LIMITATIONS AND FUTURE RESEARCH

While the present research makes a significant contribution toward understanding the effects of brand sponsorship of sporting events, some limitations need to be noted, along with future research directions. The lack of support for the match-up hypothesis in regard to image-based similarity needs more investigation, perhaps with brand stimuli encompassing an even wider range of image-based similarity. Also, the moderating effects of other types of similarity or fit could be explored, using the findings of Olson and Thjømæ (2011) as a foundation. In addition, future research could investigate the role of variables such as (a) product/brand involvement, (b) involvement in the sponsored sporting event, and (c) sponsorship of multiple (versus) single sporting events.

Finally, as discussed earlier, although Gwinner and Eaton (1999) framed their research in terms of image transfer, their dependent variable, which we adopted, measured image congruence via a measure of image distance between sponsoring brand and sponsored sporting event. When the brand sponsorship manipulation causes an increase in image congruence, because of the symmetry of the measure, one cannot definitively tell how much of the increase is on account of a change in perceptions of the brand versus a change in perceptions of the sporting event. We examined our study data for the image-based similarity conditions at an aggregate level to obtain some initial insights in this matter. We found that the brand sponsorship manipulation caused on average a change of 10.6% in brand perceptions (range: 4.4% to 15.4%) and a change of 4.9% in perceptions of the sporting event (range: 3% to 6.7%). These data seem to indicate that when brand sponsorship of a sporting event enhances image congruence, this effect can be driven by changes in perceptions of both entities, but to different degrees—perceptions of the sponsoring brand seem to be altered more than perceptions of the sponsored sporting event. The distinction between image transfer and image congruence needs much more theoretical and empirical clarification in future research.

NOTES

1. See Pappu and Cornwell (2014) for a different perspective. They argue that fit and similarity should be treated as conceptually distinct in sponsorship research.

2. Although participants in the no brand sponsorship condition were not shown any images, we doubt this factor by itself could serve as an alternative explanation for the present results, which include support for hypothesized main effects and interactions.
REFERENCES


